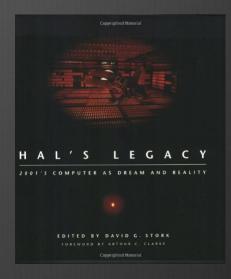
Open the pod bay doors...Siri!

Roberto Pieraccini CEO ICSI, The International Computer Science Institute Berkeley

2001 a space Odyssey The visionary talent of Clarke and Kubrick

A 1960s prediction of the technology of 40 years later



2001 a space Odyssey The visionary talent of Clarke and Kubrick

A 1960s prediction of the technology of 40 years later

Computer chess

Audio-video communication

On board entertainment

Computer graphics

Tablet devices

2001 a space Odyssey The visionary talent of Clarke and Kubrick

A 1960s prediction of the technology of 40 years later

Computer chess

Audio-video communication

On board entertainment

Except for

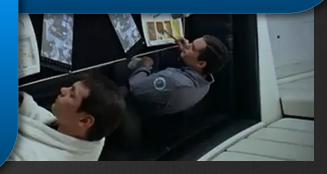
Computer Speech

Computer Vision

Computer cognition

Technology surpassed the vision

Internet The Web Smartphones Genomics ed space exploration me computing Big data



Speech technology in 2001: the vision

Speech technology in 2001: the reality

Design: Jonathan Bloom

Realization: Peter Krogh

1997, 2003, 2009 Speech Recognition Prediction Surveys Roger K. Moore, Interspeech 2011

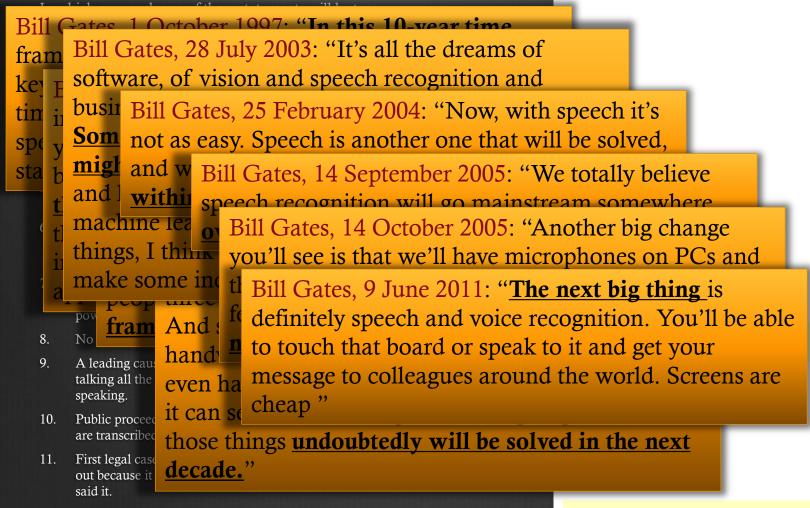
In which year each one of these statements will be true

- 1. More than 50% of new PCs have dictation on them, either at purchase or shortly after.
- 2. Most telephone Interactive Voice Response systems accept speech input (and more than just digits).
- 3. TV closed captioning is automatic and pervasive.
- 4. Voice recognition is commonly available at home (e.g. interactive TV, control of home appliances and home management systems).
- 5. Automatic airline reservation by voice over the telephone is the norm.
- 6. It is possible to hold a telephone conversation with an automatic chat-line system for more than 10 minutes without realizing it isn't human.
- 7. Voice-enabled command, control and communication in cars becomes as common as intermittent wiper, power window or power door lock.
- 8. No more need for speech research.
- 9. A leading cause of time away from work is being hoarse from talking all the time, and people buy keyboards as an alternative to speaking.
- 10. Public proceedings (e.g. courts, public inquiries, parliament etc.) are transcribed automatically.
- 11. First legal case in which a recording of a person's voice is thrown out because it cannot be proved whether a computer or a person said it.
- 12. Speech recognition accuracy equals that of the average (individual) human transcriber.

NEVER!

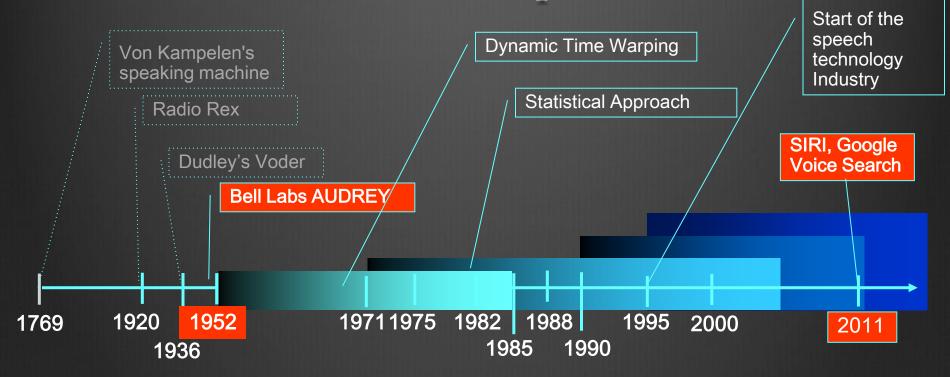
20+ years from nowalways

1997, 2003, 2009 Speech Recognition Prediction Surveys Roger K. Moore, Interspeech 2011

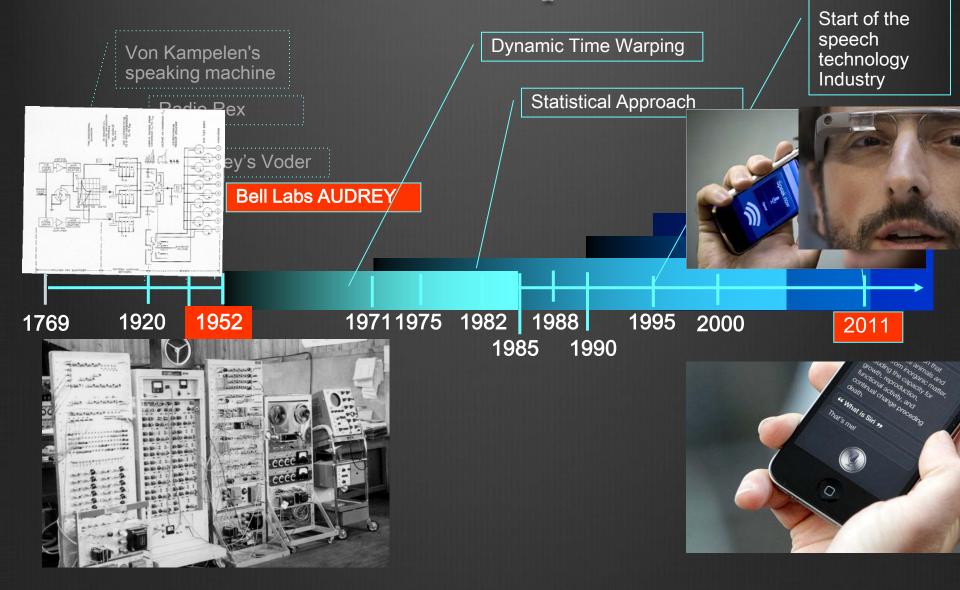


12. Speech recognition accuracy equals that of the average (individual) human transcriber.

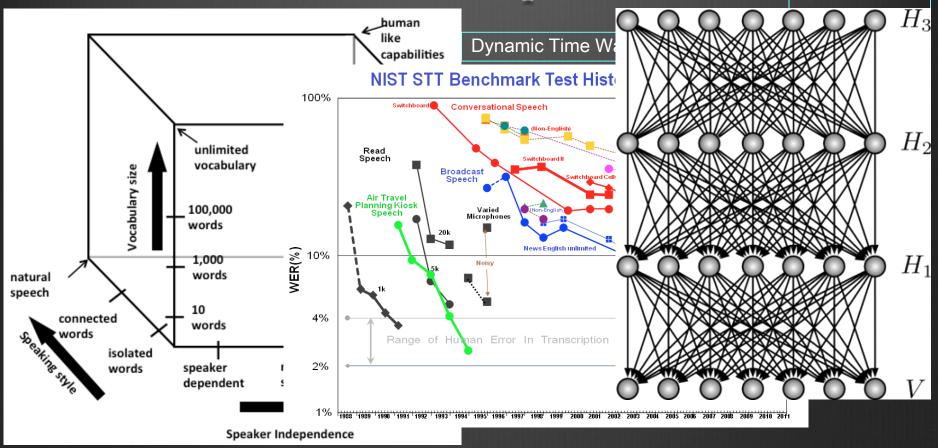
The 60 years journey of computers that understand speech



The 60 years journey of computers that understand speech



The 60 years journey of computers that understand speech

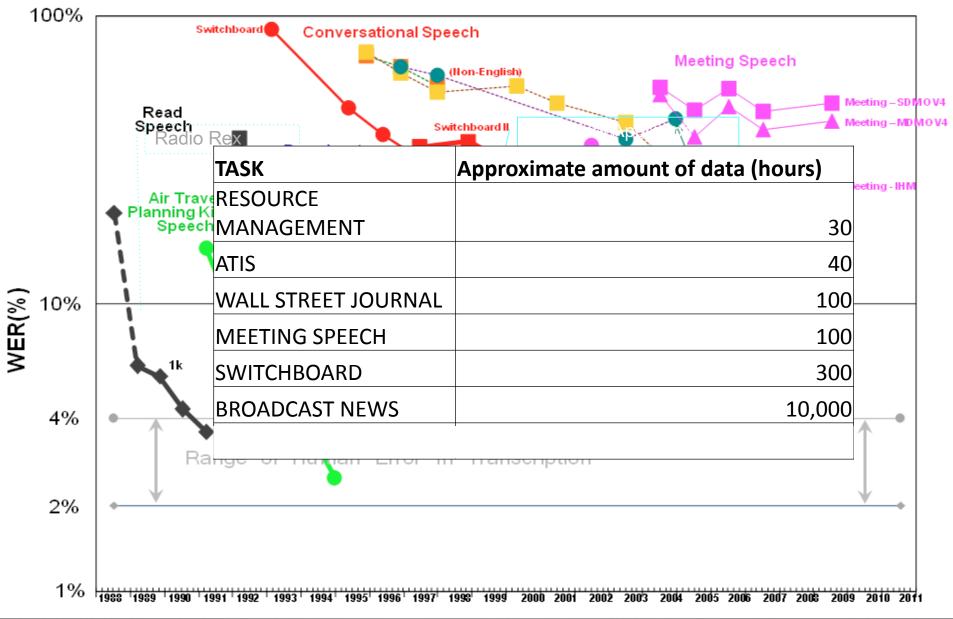


1980s: STRUGGLE FORCAPABILITIES199

1990s: STRUGGLE FOR ACCURACY

2000s: STRUGGLE FOR ROBUSTNESS

NIST STT Benchmark Test History – May. '09



So ... why is ASR so difficult?

- Humans use speech in the most adverse conditions, and yet they can communicate
- They expect machines to be able to do the same
- Solution ASR technology is very good today, but still very brittle when
 - Noise is high
 - Accent is strong
 - Microphone is far
 - Words are unknown
 - Voice is mixed with sounds, music, or other voices
 - Speaker is a goat

Speech recognition in noise

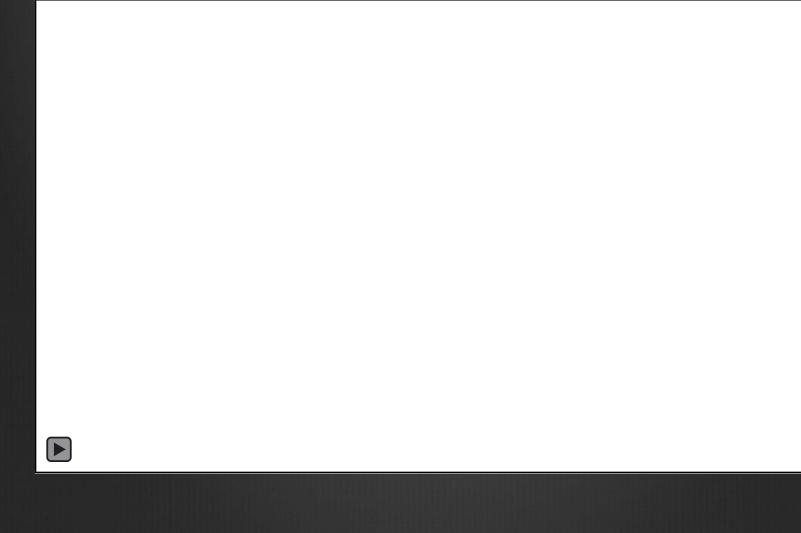
Digit recognition accuracy (AURORA-2)

SNR/dB	Restaurant	Street	Airport	Train-station	Average
clean	98.68	98.52	98.39	98.49	98.52
20	96.87	97.58	97.44	97.01	97.22
15	95.30	96.31	96.12	95.53	95.81
10	91.96	94.35	93.29	92.87	93.11
5	83.54	85.61	86.25	83.52	84.73
0	59.29	61.34	65.11	56.12	60.46
-5	25.51	27.60	29.41	21.07	25.89
Average between 0 and 20dB	85.39	87.03	87.64	85.01	86.27

Hirsch, Pearce, ISCA ITRW ASR2000

Dealing with unknown words

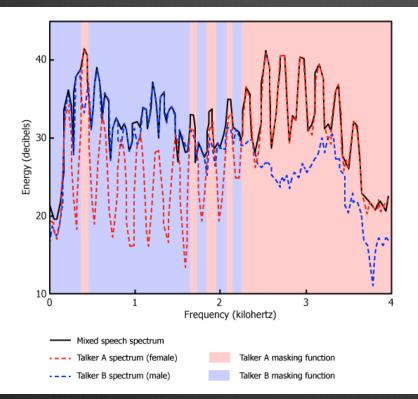
The cocktail party effect



Source separation today

From: Audio Alchemy: Getting Computers to Understand Overlapping Speech J. R. Hershey, P. A. Olsen, S. J. Rennie, A. Aaron, Scientific American, April 2011

SPEAKER MASKING ALGORITHM



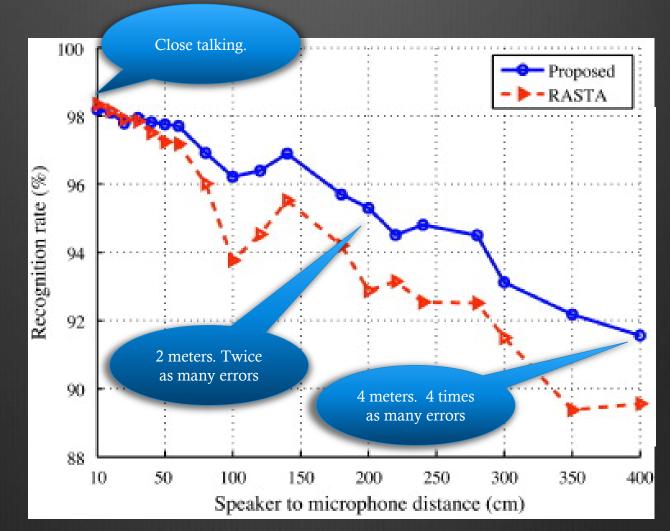
MIXED SPEECH

Speaker 1: Lay white at K 5 again. Speaker 2: Bin blue by M zero now. Speaker 3: Set green in M 7 please. Speaker 4: Lay green with S 7 please

SEPARATION BY SPEAKER MASKING

Speaker 1: Lay white at K 5 again. Speaker 2: Bin blue by M zero now. Speaker 3: Set green in M 7 please. Speaker 4: Lay green with S 7 please

Reverberation

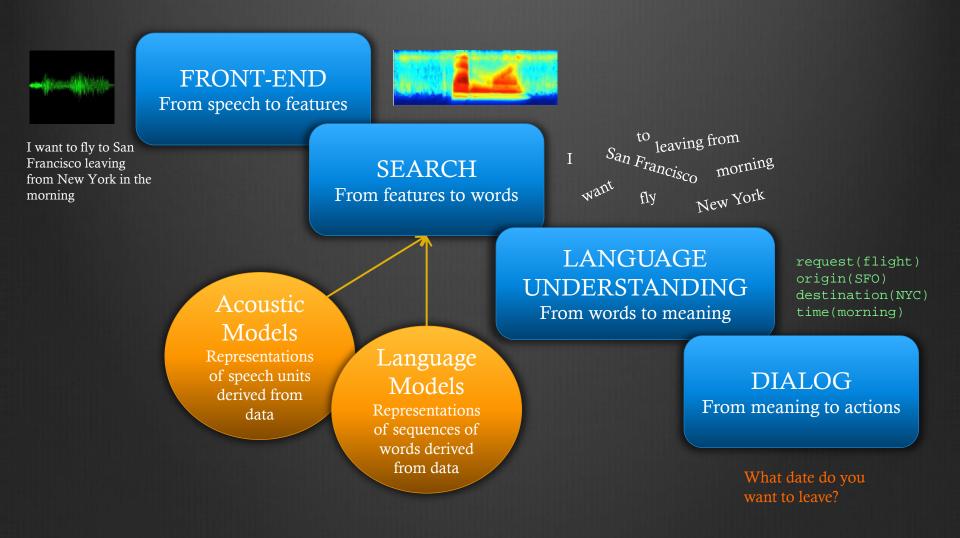


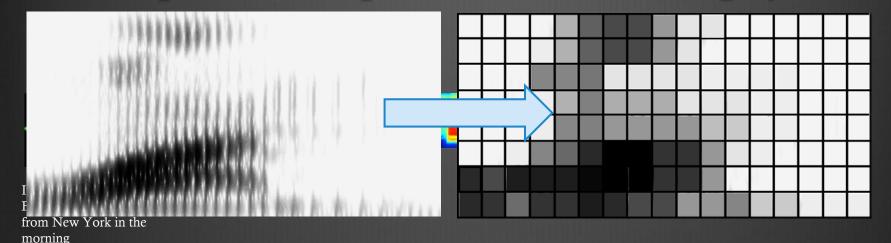
From: Sub-band temporal modulation envelopes and their normalization for automatic speech recognition in reverberant environments, X. Lu, M. Unoki, S. Nakamura, Computer Speech and Language, July 2011

Sheep and goats

We at Texas Instruments symbolize the skewed distribution [of performance among speakers] by categorizing speakers as either "sheep" or "goats". The sheep, for whom the system works well, comprise the bulk of the population, say 80-90%. But the goats, despite their minority, have the greatest influence on the performance of the system, because most of the recognition errors are attributed to them.

G. R. Doddington, "Whiter Speech Recognition?" in *Trends in Speech Recognition*, Wayne A Lea Editor, Prentice Hall, 1980.



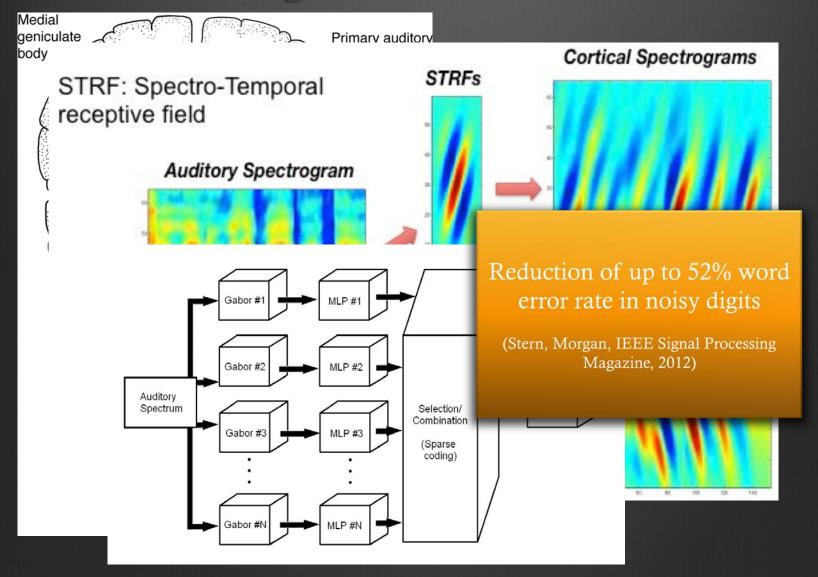


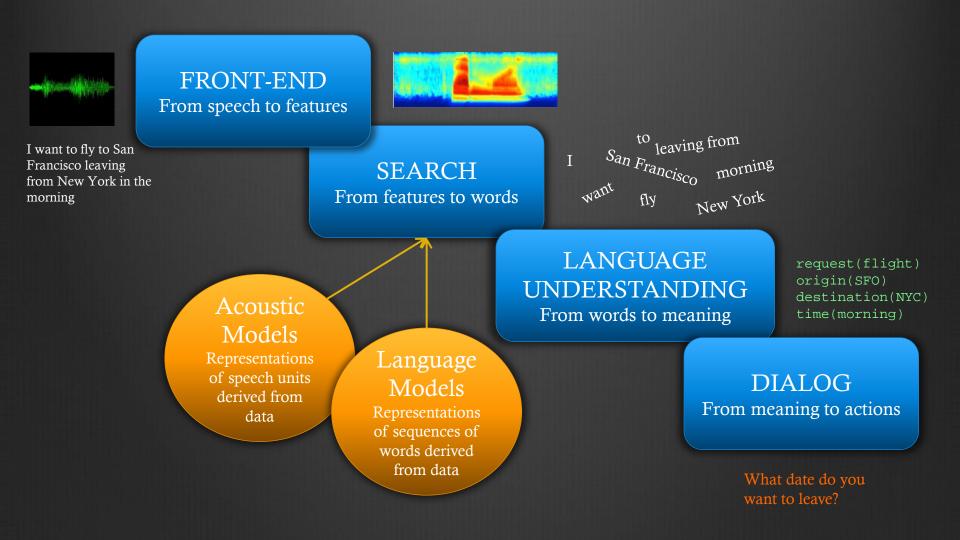
For decades we have been using variations and transformations of a coarse spectral representation of each 10 msec. segment of speech (frames)

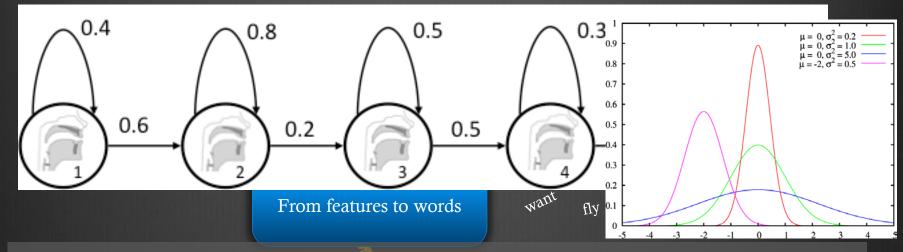
That is called MFCC, or Mel-frequency Cepstral Coefficients

But ... what is the human brain using as its front-end? After all the human brain is the best "speech recognizer" we know

Emulating the human brain cortex







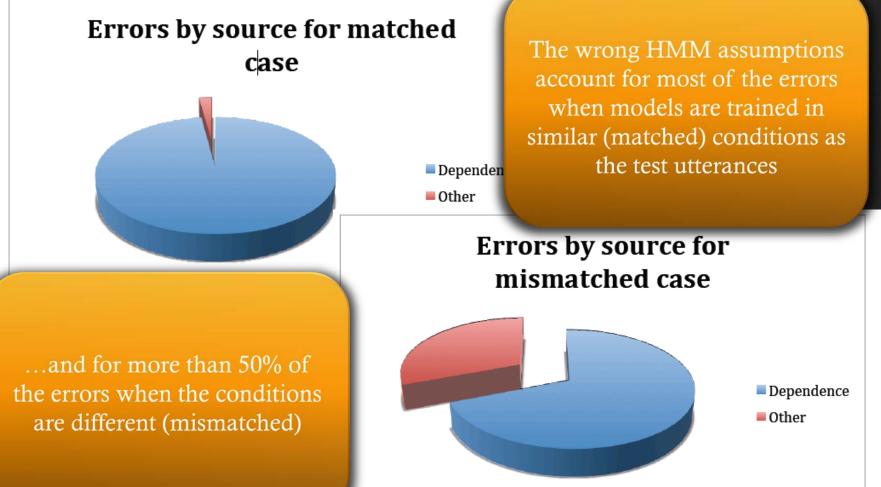
Since the 1970s, the leading approach to acoustic modeling has been that of Hidden Markov Models (HMM) based on parametric statistical distributions (Gaussian Mixture Models or GMMs)

Models

Both assumptions are know to be wrong with respect to the properties of human speech, but useful to simplify the models so as we could use them.

But now with have so much more data and so much computer power that we could try to find better and more fit models^{ta}

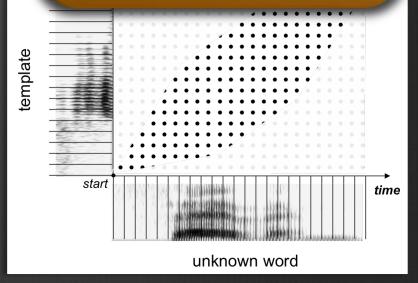
Hidden Markov Models? The effect of wrong model assumptions



Wegmann, Morgan, Cohen, 2013

Going back to templates?

Storage is so cheap and computers are so fast that thinking of using millions of templates is not unreasonable



Going from parametric to empirical statistical characterization of speech could be a viable solution

Some research teams, including IBM, are reporting encouraging results

le vle n

time (sec)

0.0

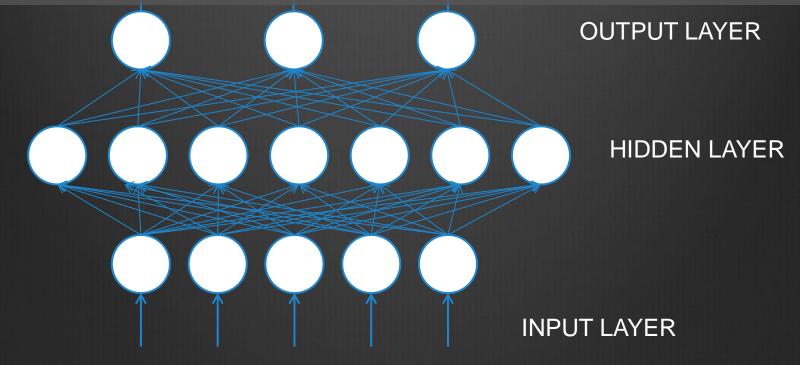
S

The return of Artificial Neural Networks

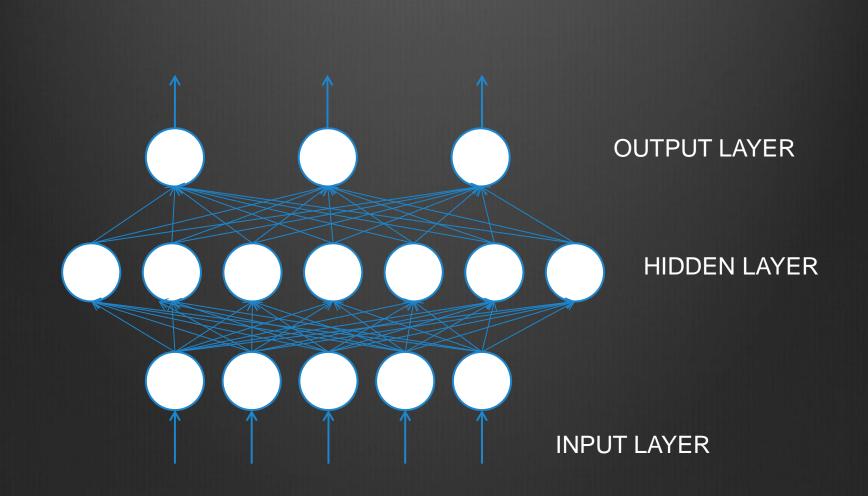
Although many tried to use Artificial Neural Networks as an alternative to Hidden Markov Models, no one could really outperform the mighty HMMs

Through the years, the only successful use of neural network was as probability density estimators in hybrid HMMs

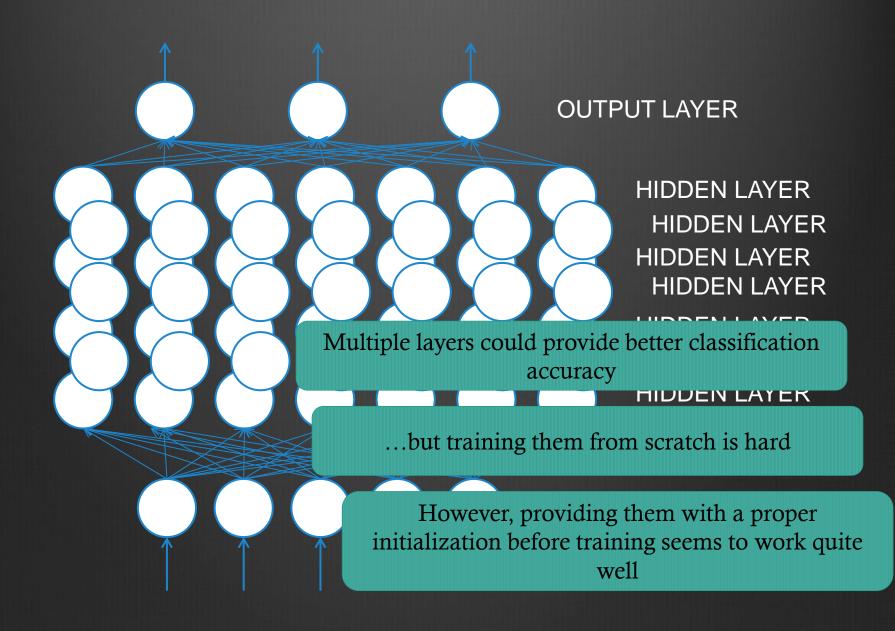
... speech research forgot about them ... until recently, when some tried to go deeper ... as in DEEP NEURAL NETWORKS



Deep Neural Networks



Deep Neural Networks



Do deep neural networks help speech recognition?

Configuration	Test WER
CD-GMM-HMM (BMMI)	34.8%
2kx5	27.4%
2kx2-(64:64)x1-2kx2	26.8%
2kx4-(64:64)x1	26.4%
2kx4-(96:96)x1	26.2%

Microsoft Research, Switchboard (Dong, Deng, Seide, Interspeech 2012)

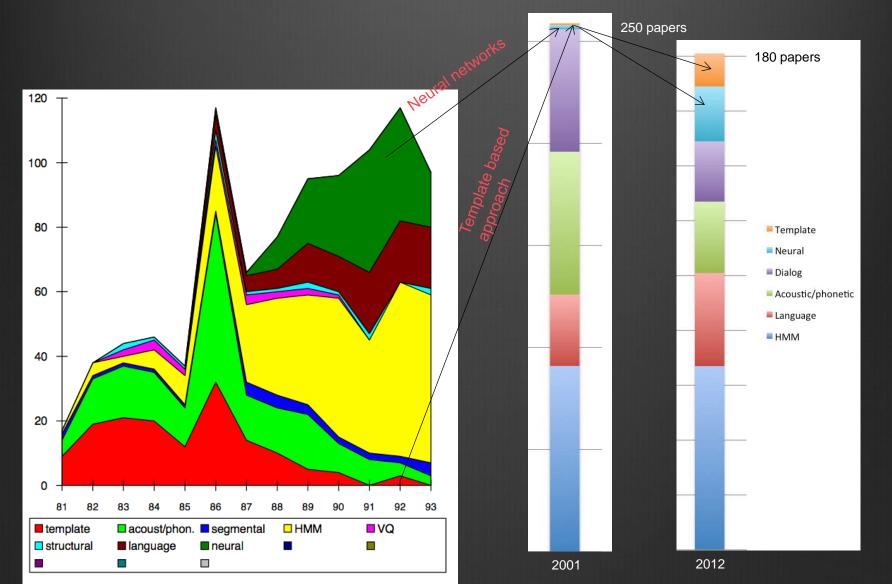
Training	WER	BMMI objfun.
ML	23.6%	0.16
FMMI	20.3%	0.18
FMMI-BMMI	18.7%	0.20

IBM research, broadcast news (Saon, Kingsbury, Interspeech 2012)

Name	Model	WER(%)
	GMM-HMM baseline	16.0
	DBN pretrained ANN/HMM with sparsity	12.3
Voice Search	+ MMI	12.2
	+ system combination with SCARF	11.8
	GMM-HMM baseline	52.3
	DBN pretrained ANN/HMM with sparsity	47.6
YouTube	+ MMI	47.1
	+ system combination with SCARF	46.2

Google (Jaitly et als, Interspeech 2012)

Trends in speech recognition research according to topics in major speech technology conferences



monthat abbart dange lagbomodel st

THE HEAD AND IN FRONT AN ENGLISH WRITER TH CHARACTER OF THIS POI ANOTHER METHOD FOR THAT THE TIME OF WHO PROBLEM FOR AN UNEXT

Claude Shannon, 1947

Google report that using **19B 4-grams** reduces the error rate of a modest amount as compared with using "only" **14M 3-grams** (from 34.6 to 31.8)

Many have tried to create hybrid models with N-grams and linguistic rules.

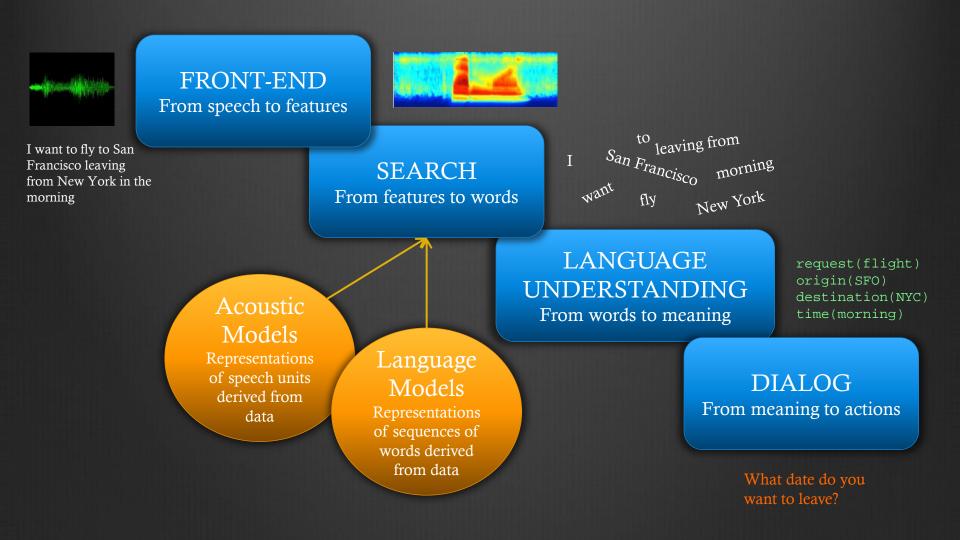
But no-one outperformed N-grams so far the leading approach to language modeling.

rd given the 2 preceding words

... if you have a 10,000 word vocabulary, you grams. Most of the work is around how to

Today's storage and CPU allow the use of massive tri-grams, four-grams, fivegrams, and above

prived



```
$ITINERARY = $FROM $TO:
                           <script>
Language understanding
                                 origin = $FROM.VALUE;
                                 destination = $FROM.VALUE;
                                 INVALIDATE = $origin == $destination;
It is highly domain depen
                           </script>
from scratch.
                           $FROM = from $AIRPORT;
                           <script>
                                VALUE = $AIRPORT.VALUE;
Commercial systems ext
                           </script>
augmented with code to
                           TO = to SAIRPORT;
                           <script>
                                VALUE = $AIRPORT.VALUE;
                           </script>
                           $AIRPORT = [new york] (J F K )|(kennedy) [airport];
                           <script>
                                VALUE = JFK:
                           </script>
                           $AIRPORT = (boston | logan) [airport];
                           <script>
                                VALUE = BOS:
                           </script>
```

ght) (NYC) q)

Language understanding is generally one of the weakest links of the chain

It is highly domain dependent. Every different domain generally has to be hacked from scratch. leaving from

San Francisco Commercial systems use handcrafted grammars augmented with code to represent meaning

Ι

LANGUAGE

morning

request (flight)

... or statistical classifiers expensively built by manually annotating hundreds of thousands of in-domain sentences

Statistical Semantic Classification

TRANSCRIPTIONS

ANNOTATIONS

want to cancel the account	CANCEL_ACCOUNT
cancel service	CANCEL_ACCOUNT
I cant send a particular message to a certain group of people	CANNOT_SEND_RECEIVE_EMAIL
cancellation of the service	CANCEL_ACCOUNT
I need to setup my email	EMAIL_SETUP
they registered my modem in from my internet and I need to get my email address	EMAIL_SETUP
my emails are not been received at the address I sent it to	CANNOT_SEND_RECEIVE_EMAIL

Language Model for Speech Recognition

Statistical Semantic Classifier

Language understanding is generally one of the weakest links of the chain

It is highly domain dependent. Every different domain generally has to be hacked from scratch. leaving from

San Francisco Commercial systems use handcrafted grammars augmented with code to represent meaning

Ι

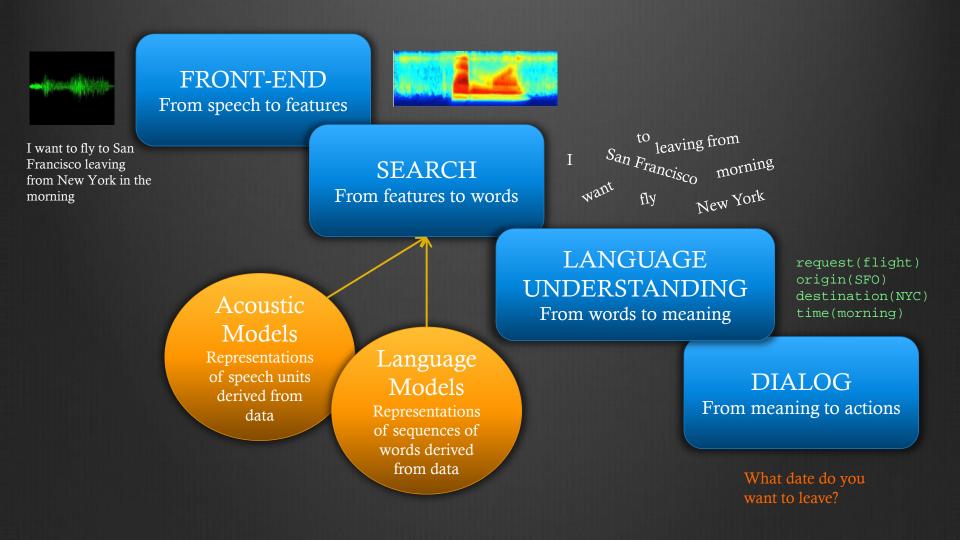
LANGUAGE

morning

request(flight)

or statistical classifiers expensively built by manually annotating hundreds of thousands of in-domain sentences

As of today we do not have domain independent language understanding systems



The dialog manager is often a giant finite state machine controller built by hand (called *call flow*)

LANGUAGE UNDERSTANDING From words to meaning

request(flight)
origin(SFO)
destination(NYC)
time(morning)

DIALOG From meaning to actions

What date do you want to leave?

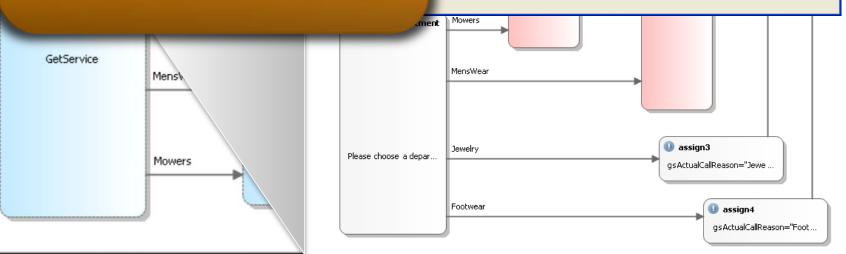
Call-flow

operties

Industry created languages, standards, and tools to help build and maintain large dialog controllers.

It also created a profession known as "Voice User Interface" (VUI) designer

ChooseDe	partment Question	•
₽₽		
	cement Stage	· · · · · · · · · · · · · · · · · · ·
E Announc	ement Prompt	Text: Please choose a department:
Audio	Source	ChooseDepartment_AN.way
Barge	In	HotWord
Post P	Prompt Silence	00:00:00
1	Direction	
		Please choose a department:
	Context	
	tage	
C	shold	0
5.	Type	Always
	npts	
	rompt	Text: So, which department: Footwear, Jewelry, Men's Wear, or Lawn Mowers
1	1 Apology Prompts	1 defined
	nots	1 defined
	mpts	2 defined
	npt	Text: Footwear, Jewelry, Men's Wear, or Lawn Mowers
	rce	ChooseDepartment ON.way
		True
	at Silence	00:00:00
	ction	0.00.00
		Footwear, Jewelry, Men's Wear, or Lawn Mowers
S	iontext	Defined
.0		3 defined
	mmars	True
er	Stage	



The dialog manager is often a giant finite state machine controller built by hand (called *call flow*)

Learning dialog by reinforcement learning is the new holy grail

LANGUAGE UNDERSTANDING From words to meaning

fly

want

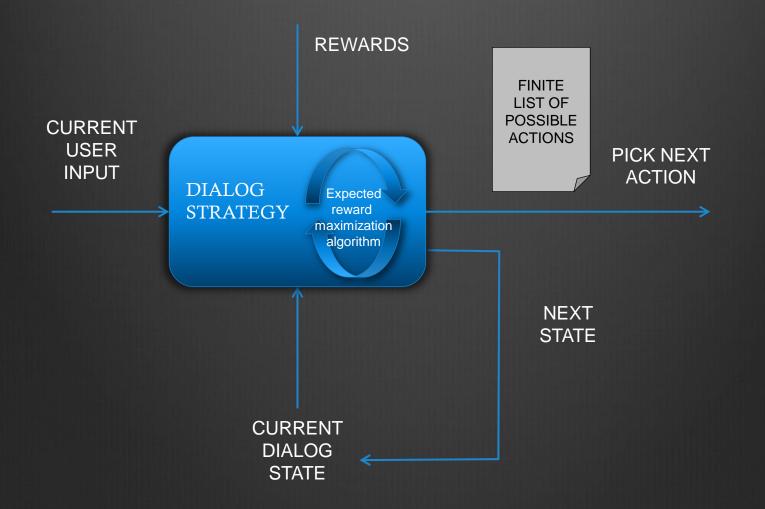
request(flight)
origin(SFO)
destination(NYC)
time(morning)

DIALOG From meaning to actions

New York

What date do you want to leave?

Reinforcement learning for dialog



Reinforcement learning for dialog

UNTRAINED STRATEGY

S: RELEASE	Do you want to choose another airline?
U:	What?
S: RETRIEVAL	
S: CONSTRAIN DEPART. TIME	When do you want to leave?
U:	UH? I want to go to Boston
S: OUTPUT DATA	There are 23,457 flights
U:	I don't understand, can you please show me the flights from San Francisco to Boston?
S: CLOSE DIALOGUE	Thank you for using AT&T.

TRAINED STRATEGY

S:	This is the AT&T flight information. How
GREETING	may I help you?
U:	I want to go to Boston.
S:	Where do you want to leave from?
CONSTRAIN ORIGIN	
U:	San Francisco
S:	Which airline?
CONSTRAIN AIRLINE	
U:	Delta
S: RETRIEVAL (30 flights)	
S:	When do you want to leave?
CONSTRAIN DEPART. TIME	
	In the late afternoon.
<u> </u>	
S: RETRIEVAL (3 flights)	
S: OUTPUT	Flight leaves at, flight leaves at
DATA	
U:	Thanks.
S: CLOSE	Thank you for using AT&T.
DIALOGUE	

CURRENT DIALOG STATE

Machine learning and dialog

UNTRAINED STRATEGY

S : RELEASE AIRLINE	Do you want to choose another airline?
U:	What?
S: RETRIEVAL	
S: CONSTR DEPAR7 TIME U: S: OUT DATA U:	When do you want to leave? Dealing with Uncertainties
S: CLO DIALOC	POMDPs (Partially Observable Markov decision Processes)
	CURRENT DIALOG STATE

Problems:			
- Des: sche	ign the proper reward ema		
	- Create artificial user for training		
C DE TIME			
U:	In the late afternoon.		
S: RETRIEVAL (3 flights)			
S: OUTPUT DATA	Flight leaves at, flight leaves at		
U:	Thanks.		
S: CLOSE DIALOGUE	Thank you for using AT&T.		

ELIZA meets PARRY

ELIZA (1964) simulates a Rogerian psychotherapist

PARRY (1972) simulates a paranoid schizophrenic

This is what happens when the two programs talk to each other

PARRY: I went to the races.ELIZA: Please go on.PARRY: Do you know anything about bookies?ELIZA: What makes you think I know anything about bookies?PARRY: A bookie didn't pay me off once.ELIZA: What does that suggest to you?PARRY: I beat up the bookie who did not pay off, and I thought he might use his friends in the underworld to get even with me

So .. Where are we now?

- 60 year of research brought great progress in computer speech understanding
- However, still far from human ability, and from the vision of a truly conversational computer
- No major breakthroughs since 30 years go
- Sust more data, and more computer power
- Lots of hard hand-crafting for the higher levels of knowledge (language understanding and dialog management)

Where are we going?

- No data like more data is still a valid paradigm for incremental improvement
- Bu we start experiencing the asymptotic limitations of the strong model assumptions we made 30 or more years ago
- Trying to understand how the brain works and applying that to machine can hopefully bring new results
- Trying to move move away from highly handcrafted systems.