

From the Internet of Things to a Web of Systems

Florian Michahelles

WoS is the combination of the ubiquitous internet and decentralized intelligence in industrial domains

WoS is the combination of internet of things with smart networked devices and domain know how

- Internet protocol
- Web technologies

- Local intelligence
- Local analytics
- Interacting
- "Apps"

- Domain-specific tasks
- Domain-specific properties
- Domain Know How
- Semantic

Internet of Things

Smart Networked Devices

Domain Context

Web of Systems

Different types of Web of Systems Enabler for brown field and green field approaches

Web of Systems - From Connectivity to a Web of Smart Networked Systems and Devices

1) 'Connected Systems'

IP-connected devices (sensors, actuators...), supplying "big data" to a central IT system.

2) 'Smart Systems'

Intelligence in the micro controllers of Smart Networked Devices communicating via webservices with a common semantic.

Create added value through local intelligence.

3) 'Interacting Systems'

A mesh of interacting Smart Networked Devices creating self-aware Smart Networked Systems, potentially a "digital twin".

Decentralized, distributed intelligence

4) 'App-powered Systems'

Enhance products by offering Services for e.g. extended features

Additional opportunities along the Life Cycle.

Internet of Things

Web of Systems

What exactly are the "things" in the Web of Systems?

"Fractal" view on Things – an example

Is every product/system a "thing"?

- •A thing can be a small sensor or a large building, depending on the viewpoint and task
- Not every small sensor needs to be a "thing" (i.e. act in the WoS)

Agenda

Introduction

About us

Projects conclusions

Research Team Web of Things

Research Silicon Valley

- Internet Technologies
 - Consumerization
 - App ecosystems
 - OpenFlow
- Web Technologies
 - Web Services
 - Web Architecture
 - Semantic Web
- Central Programs and Industry Initiatives

Emerging Technologies

- Human-robot modelling
- Wearable Sensing
- Activity Streams

SIEMENS

Corporate Technology

Web of Things (WoT) Research Group

Leveraging emerging data sources of web-connected devices

Let's grow together

The Internet of Things should leverage web technologies for...

Digital World

- 1. ...embedding sensing/acting, connectivity, and processing into objects.
- 2. ...designing objects with the characteristics and paradigms of the web.
- 3. ...incorporating applications/control also from third parties.

Agenda

Introduction

About us

Projects

Conclusions

The missing link (movie)

https://www.youtube.com/watch?v=qx8YAzZwWGU

In order to make machines responsive they have to be able to communicate across device levels.

Semantically Enriched Events Brokerage

Slide credits: Darko ;-)

Brokering events in semantically enriched Web of Things environments

ASbase: An AS-based Event Broker

Activity Streams (AS)

- Origins in social media platforms, adopted in other fields (e.g., software project management)
- We use them for more general events by defining extension properties
 - "New health data has become available!"
 - "The robot has picked up object X!"

ASbase

- Consumes events in the Activity Streams format
- Supports both request/response and publish/subscribe patterns
- Clients can query and subscribe using a filtering mechanism (based on MongoDB querying)
- Prototype online, first client interactions
 http://russet.ischool.berkeley.edu:8080

Goal: Applicability to a broad range of Siemens businesses

Make it flexible, sturdy, and (re)usable: Many different use cases and lots of testing!

Integrate Functionality across WoT Devices I'll take care of that! I have order #12 We have a few **pending** prepped for pickup! orders for car doors! www

Embed semantic functional service descriptions in smart things representations

What?

Describe what a service does

How?

Describe service API

Given **coordinates** in my workspace, I can **pick up an object** at that location!

Object Coordinates

• Object picked up

Send HTTP PUT to robot.net

$Precondition \rightarrow Postcondition \land Service Request$

What?

Describe what a service does

How?Describe service API

Given **coordinates** in my workspace, I can pick up an **object** at that location!

 $Precondition \rightarrow Postcoletion \land Service Request$

Semantic reasoning engines can process these descriptions and automatically combine services to achieve a user goal

This enables the **goal-driven configuration** of smart environments!

I want the robot to hold the car door.

Send an HTTP GET request to carDoor.net to obtain its position.

Next, send this position to robot.net in an HTTP PUT request.

Responsive Machines: Teaching Collaboration

Universal Robotics UR5

Environment Representation

Modeling as semantic facts

Robot reacts to environmental cha

Human-Robot Collaboration

Human kinematic model

GET carDoor.net

200 OK [Door Position]

The ASbase Project

Goal: Facilitate integration of heterogeneous data sources, algorithms, and consumers

Example: Personal Healthcare

- Wearables supply health/wellness data about patients
- Doctors can use this data in the diagnosis process
- Need for selecting relevant bits of the data
 - Dependent on the patient's condition!

Goal: Facilitate integration of heterogeneous data sources, algorithms, and consumers

Example: Industrial Maintenance

- Sensors provide data streams
- Maintenance personnel can make use of this data
- Need for selecting relevant bits of the data
 - Dependent on the problem at hand!

Agenda

Introduction

About us

Projects

Conclusions

Semantically Enriched Events Brokerage

How do these "interested parties" know what to subscribe to?

Semantically disambiguated events

How do "interested parties" work with APIs using different models or terminology?

Semantically Enriched Events Brokerage

Next, the world!

- Lightweight event tracking scales nicely
- Semantic integration mediates information-heavy tasks such as disambiguation or filling in the gaps
- Neither of these is domain specific
 - Tools such as browsing would apply in any domain
 - Tools such as inferencing would apply to any model
- Future demonstrations
 - Greater complexity in semantic relationships
 - Event chaining such as task planning and execution
 - Vertical integration where agents view and use the same information in different ways

Web of Things requires a stack of technologies for smart things and applications

Technology: Communication Stack for Smart Things

Questions to be answered

How to manage smart things with regards to...

- ...describing needs, characteristics, service offerings?
- ...establishing collaboration among devices?
- ...balancing performance, reliability and security?

How to describe data and control in order to...

- ...enable "Plug and Automate Functionality"?
- ...mediate between data models of embedded devices?
- ...integrate vertical standards into the semantic web technology stack (e.g. RDF, OWL)?

How to leverage smart things and big data processing by...

- ...moving run-time procedures between cloud and edge?
- ...harvesting domain knowledge and context information?
- ...keeping control of determined and well defined process?

Thank you very much!

Questions?

Dr. Florian Michahelles

florian.michahelles@siemens.com +1 609 216 1455

Head of Research Group Web of Things

Siemens Corporation 2087 Addison St 94704 Berkeley California