

A Virtual Laboratory for Distributed Systems Research

Examples in Research (MAKI) and Teaching

ICSI, Berkeley March 31, 2015

Paul Mueller

Integrated Communication Systems Lab
Dept. of Computer Science
University of Kaiserslautern
Paul Ehrlich Bld. 34, D-67663 Kaiserslautern, Germany
Tel.+49 631 205 2263, Fax. +49 631 205 3056
www.ICSY.de

Content

G-Lab: Vision of the Future Internet

- BMBF project 2008 2012
- Closing the loop between research and real-world experiments
- Provide an experimental facility for studies on architectures, mechanisms, protocols and applications towards Future Internet
- Investigate interdependency of theoretical studies and prototype development

Project G-Lab

The Lab

- Distributed resources across 6 sites
- Central administration at Kaiserslautern
- Connectivity German NREN (DFN)

Exclusive resource reservation

- Decentralized Resources can be independently used
- Tests on the lower layers of the network without affecting the operating network

Control frameworks

- PlanetLab (PLC at Kaiserslautern)
- ToMaTo
- Interfaces to other testbeds (GENI, PlanetLab Japan, WinLab, ...)
- OpenFlow setup (virtual as well as hardware setup)

IUD	I O Dellill
TUD	TU Darmstadt
TUKL	TU Kaiserslautern
TUM	TU München
KIT	University Karlsruhe

UWUE University Wurzburg

TII Dorlin

TIID

To MaTo / G-Lab Testbed

► Topology Management Tool

- A part of German-Lab research project WP7
 - Open Source since version 2.0 (hosted at github)
 - Can be used independently from G-Lab
- Currently >12 partner institutions (worldwide)
- >122 Nodes: up to 256 GB memory, 4-24 cores
- A topology-centric network testbed & virtualization
- Each experiment has its own virtual network topology + virtual hosts; each topology is self contained
- WebUI
 - Intuitive topology definition and management
 - Direct access to virtual machines: e.g. VNC console
- Advanced features for topology management:
 - JSON-based description language (import/export of topologies)
 - Python XML-RPC API (also used by WebUI itself)

Topology- vs. Slice-Based Orientation

- ► Temato-lab.org is topology-oriented
 - Basic abstraction is the topology
 - Hosts provide virtual components
 - Topologies can be constructed using those virtual components
 - Tunneling and stitching is inserted automatically
 - Not restricted by physical topology
- PlantLab/GENI facilities are slice-based
 - Slice is a subset of the existing topology
 - Networks are isolated by VLans
 - Topologies are restricted by physical topology
- Practical differences
 - Fully virtual network components in ToMaTo (routers, hubs, switches, OpenFlow, etc.)
 - Automatic layer 2 tunneling, no need for physical layer 2 connections
 - Ability to use multi-homing even when no site is multi-homed

Framework Comparison

Framework Comparison

	Planet-Lab	Emulab	Seattle	T MaTo
Multiple sites	√	0	(⋞)	√
Physical hardware access	0	V	0	0
End-System virtualization	√	(⋞)	√	√
Network virtualization	0	√	0	√
Layer 2 access	0	√	0	√
Link emulation	0	√	0	V
Packet capturing	0	(⋞∕)	0	√
High traffic (>100 Mbit/s)	0	V	0	0
Resource profiles	√	0	0	√
VNC control	0	0	0	*

Tem MaTo The Architecture

Hostmanager

- Hosts based on Proxmox VE
- Controls one host,
- Offers virtualization/network capabilities
- Controls local topology elements

Frontend(s)

- Multiple frontends possible
- Currently: Web-based, CLI

Backend

- Controls whole topologies
- Distributes topologies over hosts
- Applies stitching
- Delegates management to hosts
- Monitoring
- User management
- Provides XML-RPC interface

Temato-lab.org - the elements

- Topology contains
 - Devices: produce and consume data; can run software
 - Three kinds of devices
 - KVM devices (green)
 - OpenVZ devices (blue)
 - Programmable devices (orange)
- Connectors forward and manipulate data and connect devices
 - Two kinds of connectors
 - VPN networks (based on Tinc)
 - External networks

- Graphical representation
 - Icons show element type
 - Colored icons show virtualization technology
 - Link color shows network segments
 - Link style shows link attributes
- Per Topology
 - Accounting
 - Permissions

VM Elements

- Full virtualization
- Integrated into Linux Kernel
- OpenVZ
 - Container virtualization
 - Added to Linux Kernel via patch
- Scripts
 - Programming language virtualization
 - Installed as software
- Repy scripts
 - Restricted Python (Sandbox)
 - Technology from Seattle testbed
 - Modified for To MaTo to mate-lab or a
 - Functions for receiving and sending raw ethernet packages
- Additional elements
 - Easy to add more
 - Planned: VirtualBox, LXC, ...

Features

	KVM	Open VZ	Repy scripts
# per node	~20	~100	~1000
any x86 OS	V	0	0
Linux OS	V		0
Kernel space		0	(√)
Console support	1	1	1
Mouse/ Keyboard input	V	V	0
Layer 2 connectivity	V	1	V
Interface configuration	(*/)	V	(V)

Temato-lab.org - Controlling the elements

- ► Choose a template
 - Linux
 - Windows (on KVM systems)
 - Programmable devices (Repy)
 - Open Vswitch (KVM)

- ► Rename the elements
- Choose a site otherwise the element will be distributed based on load balancing
- ▶ Profile defines #CPU, RAM, Disk

Connectors / Network Elements

- VPN: Tinc
 - Full mesh VPN without server
 - Fully contained, virtual network
 - Cross-site layer 2 connectivity
 - Open endpoints allow federation
- Tunnel: VTun
 - Layer 2 tunnel over UDP
 - Open endpoints allow federation
- External networks
 - Bridge into local network segments
 - E.g. Internet or local research network
- SDN / OpenFlow
 - openVswitch / NEC
 - Floodlight / Ryu OpenFlow Controller

Temperature and editor

- ► Administrator/Developer features
 - Intelligent load-balancing
 - Open xml-rpc interface
 - LDAP integration
- ▶ User features
 - Automatic network interface configuration
 - Changes to running topologies
 - Console access
 - Image up/download
 - Pcap capturing (packet capturing)
- ► Temato-lab.org graphical editor
 - Easy to use
 - Full control over topology elements
 - Shows resource usage
- Configures network interfaces
 - IP addresses / Netmasks

Link Emulation

Properties

- Bandwidth
- Latency
- Jitter
- Packet loss
- Corruption
- Duplication
- On link bases:

Packet Capturing

- Properties
 - Captures packages on the wire
 - Direct filtering
 - Format: Pcap, (compatible with Wireshark)
 - Two modes
 - Download
 - Live capture
- Cloudshark
 - Online tool for packet analysis
- Packet capturing
 - On link bases

Executable Archives

- Software + dependencies
- Start/Install script

Archive actions

- Upload: unpacks contents to a folder and runs start script
- Download: packs folder into archive and transfers it to user
- Status: displays the status of execution

Use cases

- Install software packages on V
- Run complete experiments
- Upload/Download data

Experiment lifecycle

- Create executable archive
- Upload archive, run experiment via start script
- Download archive, contains results

Console Access

- Multiple VNC options
 - HTML 5
 - Java applet
 - Client software

Temato-lab.org Application Areas

Access layer experiments

- Consider lower layers and hardware
 - Example: Mobile handover
- Requirements
 - Hardware access
 - Custom operating systems (Realtime)
 - Heterogeneous access technologies (3G, Wifi, etc.)
- Needs specialized testbeds depending on hardware NO support ToMaTo
 - DES Testbed, Wisebed

Network layer experiments

- Focus on TCP/IP suite
 - Example: IPv6 extensions, TCP substitutes
- Requirements
 - Deep OS access (modified kernels, etc.)
 - Small but complex topologies, link emulation
- ToMaTo offers
 - Full kernel access via KVM
 - Complex topologies
 - Link emulation
 - Packet capturing (for analysis)
 - Easy setup of topologies

Algorithm/Protocol experiments

- Work on top of network layer
 - Example: P2P-Networks
- Requirements
 - Huge but simple topologies
 - Link emulation
 - No hardware or OS access

- ToMaTo offers

- Lightweight virtualization with OpenVZ
- Link emulation
- Federation with other testbeds via Internet

Legacy software experiments

- Considers legacy software
 - "Legacy software" refers to any widespread software with undocumented or unpublished behavior
 - Example: Skype and Windows
- Requirements
 - · Special environments, custom operating systems
 - Small but complex topologies
 - Link emulation and external packet capturing

- *T*⋒MaTo offers

- Custom operating systems with KVM (Windows
- Access to external service via Internet connector
- Packet capturing independent of guest OS

Worldwide sites

- Single-host deployment
 - Hostmanager, Backend and Web-Frontend can run on the same host
 - Easy for local tests
- Isolated multi-host setups
 - Running multiple hosts with a single backend and webfrontend

- Federated setups
 - To MaTo hosts can be used by multiple backends
 - The **To MaTo** community consists of over 122 hosts at several sites
- Testbed on demand
 - Dynamically allocate cloud resources for experiments
 - Current research effort
 - Master thesis on allocating resources from CloudLab for Tomatalabase
 - Bachelor thesis on dynamic allocation of resources

Use case 1: mobile devices

Scenario

- Services for agriculture iGreen
- Support for mobile devices
- How does latency affect QoE and accuracy?

Corruption ratio

Use case 2: Malware Analysis

- Scenario
 - Analysis of worm
 - Focus on network behavior
 - Fully contained topology
- Topology
 - Must run a Windows machine
 - External network (Internet) is connected to the victim to upload the virus
 - The external network is disconnected and the virus can be started
 - The links can be monitored to analyze the virus traffic
- Mato usage
 - Simple topology
 - No connection to Internet
 - Usage of packet capturing

Topology 'routing'

Use case 3: MAKI: Study of Transitions in Overlaybased Streaming Systems

- Requirements for testbed experiments
 - Scenario: 100+ machines, real and emulated network parameters
 - Tooling:
 - Automatic, parametrized generation of ISP-like network topologies – custom script
 - Automatic deployment of software on testbed – custom script
 - Planned: usage of OpenFlow-controlled software
 - Software switches: OpenVswitch
 - Hardware switches NEC

Steps taken

- Study of available features, first proof of concept (ToMaTo web frontend)
- Topology generation script (based on ToMaTo Python API)

To MaTo Python XML-RPC API

Features

- Supports all actions that are available on WebUI
- Plus useful commands for programmatic work with topologies

Examples

- Creation of hosts
 node = element_create(topId, nodeType, None, {"site": "ukl","_pos": {"x":x,"y":y}})
- Creation of standard switches switch = element_create(topId, "Inner Core", None, {"_pos": {"x":"0.5", "y":"0.5"}})
- Running commands on hosts
 element_action(node_id, "execute", {"cmd":"apt-get install rsync"})

Main lessons learned

- Run time consuming actions in parallel (especially prepare of elements)
- Use Linux (Windows works but is not tested well and requires changes to framework – Feature request including fixed were filed by us)
- Positioning of elements should be done in script (if use of WebUI is intenteded)

Testbed on Demand

Current developments

- Extending and improving ToMaTo testbed
- Early work on scalable federated clouds
- Kaiserslautern has become an associated partner of the US CloudLab project

CloudLab

- New NSF funded project across the US
- Kaiserslautern has become an associated partner to the CloudLab project
- CloudLab offers bare metal machines

International connectivity

Clemson-Internet2-StarLight-KL

Summary

- ► ToMato is a new network experimentation tool
 - Based on virtualization (KVM, openVZ, ...)
 - Easy to use graphical front end
 - Open-Source since version 2.0
 - Ready to use: http://tomato-lab.org/
- Feature rich environment
 - For research and teaching
- Sustainability
 - Supported by Data Center at Kaiserslautern
 - Part of new research projects (like MAKI)
- Worldwide footprint
 - Hopefully next time at ICSI/Berkeley
- Testbed on demand based on bare metal cloud infrastructures
 - Dynamic deployment of TopMaTo infrastructure to CloudLab and Chameleon

Prof. Dr. Paul Mueller

Integrated Communication Systems ICSY

University of Kaiserslautern
Department of Computer Science
P.O. Box 3049
D-67653 Kaiserslautern

Phone: +49 (0)631 205-2263 Fax: +49 (0)631 205-30 56

Email: pmueller@informatik.uni-kl.de

Internet: http://www.icsy.de

Literature

- Paul Müller, Bernd Reuther: Future Internet Architecture A Service Oriented Approach, it - Information Technology, Jahrgang 50 (2008) Heft 6, S. 383-389 6/2008.
- ▶ Dennis Schwerdel, Daniel Günther, Robert Henjes, Bernd Reuther, Paul Müller: **German-Lab Experimental Facility**, Future Internet FIS 2010, Lecture Notes in Computer Science, 6369, 2010.
- ▶ Dennis Schwerdel, Bernd Reuther, Thomas Zinner, Paul Müller and Phuoc Tran-Gia, Future Internet research and experimentation: The G-Lab approach, Computer Networks, January 2014, ISSN 1389-1286.
- ▶ Paul Müller, Dennis Schwerdel and Justin Cappos, ToMaTo a Virtual Research Environment for Large Scale Distributed Systems Research, PIK Praxis der Informationsverarbeitung und Kommunikation, 2014.
- ▶ Dennis Schwerdel, David Hock, Daniel Günther, Bernd Reuther, Paul Müller and Phuoc Tran-Gia, ToMaTo a network experimentation tool, 7th International ICST Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities (TridentCom 2011), Shanghai, China, April 2011.